医用电气设备使用可靠性信息收集与评估方法

Methods for collecting and evaluating the reliability information of medical electrical equipment

（征求意见稿）

2020.07.12

XXXX—XX—XX 发布 XXXX—XX—XX 实施

国家药品监督管理局 发布
目 次

前言.. V
1 范围 .. 1
2 规范性引用文件 .. 1
3 术语和定义 .. 1
4 医用电气设备使用可靠性信息收集 ... 4
 4.1 使用可靠性信息的来源 ... 4
 4.2 使用可靠性信息的内容 ... 4
 4.3 使用可靠性信息收集的程序和方法 .. 6
 4.4 故障判定与记录 .. 7
 4.5 信息分析、处理、传递的要求和方法 .. 8
 4.6 信息的分类与编码 .. 9
5 医用电气设备使用可靠性评估 ... 9
 5.1 综述 ... 9
 5.2 确定使用可靠性评估的指标 ... 10
 5.3 样本的确定 ... 10
 5.4 使用可靠性信息的初步整理 ... 10
 5.5 分布类型检验 ... 12
 5.6 连续型分布的参数估计 ... 13
 5.7 软件程序等其他方法 .. 13
 5.8 编制使用可靠性评估报告 ... 13
附录 A（资料性附录） 医用电气设备使用可靠性信息收集表 15
附录 B（资料性附录） 医用电气设备的其它相关使用可靠性参数说明 16
附录 C（资料性附录） 医用电气设备使用可靠性统计方法应用 20
附录 D（资料性附录） 相关分布类型检验 ... 33
参考文献 ... 36
前 言

本文件按照 GB/T 1.1—2020 《标准化工作导则 第 1 部分：标准化文件的结构和起草规则》的规则起草。
请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。
本文件由国家药品监督管理局提出。
本文件由全国医用电器标准化技术委员会（SAC/TC10）归口。
本文件起草单位：
本文件主要起草人：
医用电气设备使用可靠性信息收集与评估方法

1 范围

本文件规定了医用电气设备和医用电气系统（以下简称ME设备）开展使用可靠性信息收集与使用可靠性评估工作的一般要求和工作项目。通过有计划地收集设备使用期间的各项可靠性数据，为医用电气设备的使用可靠性评估与改进，完善与改进使用与维修工作，以及为新研医用电气设备的论证与研制等提供信息，为使用单位、生产企业和行业机构之间合作开展使用可靠性数据收集相关工作提供依据和方法。

本文件适用于各类ME设备使用期间（产品交付之后到产品退役期间，运行、贮存、转运、质量监督、维护维修等过程）可靠性数据的收集和评估。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中，注日期的引用文件，仅该日期对应的版本适用于本文件；不注日期的引用文件，其最新版本（包括所有的修改单）适用于本文件。

GJB 451A-2005 可靠性维修性保障性术语
GB/T 2900.99-2016 电工术语 可信性
GB/T 3187-94 可靠性、维修性术语
GB/T 3358.2-2009 统计学词汇及符号 第2部分：应用统计
GB 9706.1-2007 医用电气设备 第1部分：安全通用要求
GB/T 17560-1998 数据的统计处理和解释 中位数的估计
YY/T XXXX-20XX 医用电气设备可靠性技术通用要求和方法

3 术语和定义

YY/T XXXX、GB 9706.1界定的以及下列术语和定义适用于本文件。

3.1 不可控环境 uncontrollable process
医用电气设备使用的恶劣环境，通常指无保温供暖及通风的环境，以及与此相类似的室外环境。

3.2 参数估计 parameter estimation
根据样本推断未知的总体分布参数。
医用电气设备的使用可靠性数据的分析中，估计用于表征可靠性指标的参数或参数函数的过程。
[来源：GB/T 17560-1998，3.1.1，有修改]

3.3 分布模型 distribution model
特定的分布或分布类。
医用电气设备的寿命分布的数学函数表达方式，通常有指数分布、威布尔分布，正态分布等。
[来源：GB/T 3358.2-2009，2.5.3，有修改]

3.4
分布函数 distribution function
随机变量的值小于或等于任意选定值的概率的函数。

\[
F(t) = p(\theta \leq t) \ndern(1)
\]
式中:

\(F(t)\)——失效分布函数；
\(\theta\)——平均寿命；
\(t\)——选定时间。
[来源：GB/T 2900.99-2016，192-13-07，有修改]

3.5
故障 fault
医用电气设备不能执行规定功能的状态。预防性维修或其他计划性活动或缺乏外部资源的情况除外。
故障通常是医用电气设备本身失效后的状态，但也可能在失效前就存在。
[来源：GB/T 3187-94，4.2.1，有修改]

3.6
故障模式 fault mode
相对于给定的规定功能，故障产品的一种状态。
[来源：GB/T 3187-94，4.2.22]

3.7
耗损失效 wearout failure
失效概率随时间的推移而增大的失效。它一般由老化、磨损、损耗、疲劳等因素引起，是医用电气设备固有过程的结果。
[来源：GB/T 3187-94，4.1.9，有修改]

3.8
可靠度 reliability
在确定的置信水平下，医用电气设备在给定的条件下在给定的时间区间 \((t_1, t_2)\) 内执行规定功能的可能性。
[来源：GB/T 2900.99-2016，192-05-05，有修改]

3.9
可靠寿命 reliable life
在不同的时刻，可靠度将具有不同的可靠水平 r，当医用电气设备的可靠度下降到给定的可靠水平 r 时，这个时间就称为医用电气设备的可靠寿命。记做 t_r。

$$ R(t_r) = r \hspace{2cm} (2) $$

比如，中位寿命就是指可靠水平 $r = 0.5$ 时所对应的时间，即 $R(t_{0.5}) = 0.5$。

3.10

平均故障间隔时间 mean time between failures；MTBF

对可修复的医用电气设备，平均故障间隔时间是指两次故障间隔时间的平均值。有时也称平均无故障工作时间。

3.11

平均严重故障间隔时间 mean time between critical failures；MTBCF

与任务有关的一种可靠性参数。其度量方法为：在规定的一系列任务剖面中，医用电气设备任务总时间与严重故障总数之比。原称致命性故障间的任务时间。

【来源：GJB 451A-2005，2.5.2.14，有修改】

3.12

平均维修间隔时间 mean time between maintenance；MTBM，T_{BM}

与维修方针有关的一种可靠性参数。其度量方法为：在规定的条件下和规定的时间内，医用电气设备寿命单位总数与该设备计划维修和非计划维修事件总数之比。

【来源：GJB 451A-2005，2.5.2.16，有修改】

3.13

失效分布密度函数 failure distribution density function

用来表征失效分布随时间区间变化的情况。医用电气设备工作到时间 t 时，单位时间内失效的数量与总数之间的比值，记做 $f(t)$。

$$ f(t) = \frac{dF(t)}{dt} \hspace{2cm} (3) $$

因此，一般有：

$$ R(t) = 1 - F(t) = 1 - \int_0^t f(x)dx \hspace{2cm} (4) $$

3.14

瞬时失效率 $\lambda(t)$ instantaneous failure rate

设在时间区间 $(0, t)$ 内未发生失效，不可修复产品在时间区间 $(0, t + \Delta t)$ 内出现失效的条件概率与区间长度 Δt 之比，当 Δt 趋于0时的极限（如果存在）。

3
3.15
随机失效 random failure

医用电气设备由于偶然因素发生的失效。

3.16
使用可靠性评估 operational reliability assessment

医用电气设备在使用过程中，在给定时间内、规定条件下，连续实现其功能的能力。通常用可靠性指标和分布方式来进行表达。

4 医用电气设备使用可靠性信息收集

4.1 使用可靠性信息的来源

主要来源于医用电气设备验收交付后，运行、贮存、转运、质量监督、维修维护等过程中的可靠性相关信息。

4.1.1 运行

使用方的使用记录。

4.1.2 贮存

设备从验收交付后到寿命终止整个过程中，任何长期或短暂存放的贮存记录。

4.1.3 转运

设备使用期间在用户内周转及从用户运输到维护维修、检测机构等的各种信息。

4.1.4 质量监督

使用单位、监管部门对设备进行检定检测、监督检查的信息记录。

4.1.5 维修维护

医用电气设备在使用过程中的维修维护信息记录。

4.2 使用可靠性信息的内容

4.2.1 设备信息

设备、部件和附件的名称、型号规格、序列号、生产批号等信息。

4.2.2 用户信息

用户可收集的相关信息:

a) 使用地址；
b) 使用单位信息；
c) 设备使用场内移动频次，比如位置固定基本不移动、每次使用都移动等；
d) 操作人员、操作习惯等信息。

4.2.3 环境条件信息

医用电气设备的环境条件包括但不限于：
a）气候环境信息
1) 在可控环境下工作的医用电气设备，气候环境因素主要指以下信息：
 ——温湿度、气压、盐雾因素；
 ——光照辐射因素：太阳间接辐射、紫外灯照射、白炽灯照射等。
2) 在不可控环境下工作的医用电气设备，气候环境因素除了以上几点外，还可以包括以下方面：
 ——酸雨因素：PH 值、类型等；
 ——水因素；
 ——太阳直接辐射；
 ——大气污染因素：砂尘及雾霾颗粒度、性质等。

b) 生物化学环境信息包括：
1) 昆虫、微生物、啮齿动物等；
2) 化学气氛：清洁剂、消毒液、体液、排泄物、化学试剂等。

c) 机械环境信息包括：
1) 振动因素：是否处于或靠近振动源；
2) 机械冲击因素；
3) 噪声因素。

d) 电源及电磁场包括：
1) 电力供应质量、电力负荷能力、断电等信息；
2) 非电离电磁辐射骚扰。

e) 高能辐射环境因素包括：
 电离辐射。

4.2.4 运行状况

医用电气设备运行状况可收集的信息：
a) 医用电气设备交付及验收时间；
b) 储存时间；
c) 开始启用时间；
d) 使用时间（次数）；
e) 使用频次；
f) 故障时间；
g) 维修开始时间；
h) 维修结束时间；
i) 再次开始使用时间；
j) 定期维护周期；
k) 定期维护时长；
l) 抽检检验周期；
4.2.5 故障信息
医用电气设备可收集的故障信息:
 a) 故障时间;
 b) 故障部位，如元器件、零组件、材料等;
 c) 故障模式，如开路、短路、漏电、脱落、生锈、漏气等;
 d) 故障发生时机，如开机、运行、暂停、急停、关机等;
 e) 故障发生时周围环境突变情况，如断电、雷电等;
 f) 故障等级分类，如严重（死亡或功能或结构的丧失）、中等（可恢复的或较小的伤害）、可忽略（不会引起伤害或轻微伤害）等;
 g) 故障描述，可以包括文字、图片、语音、视频。

4.2.6 监测数据
医用电气设备可监测数据包括:
 a) 自测试数据;
 b) 性能监测数据;
 c) 外部诊断测试数据;
 d) 操纵对应的控制器时，该测试点给出的信号指示信息;
 e) 非电系统的监测信息，如监测机械系统状态等。

4.2.7 维修维护信息
医用电气设备可收集的维修维护信息:
 a）维修周期;
 b）维修起止时间;
 c）再次开始使用时间;
 d）维修级别;
 e）维修内容;
 f）维修更换备件名称、型号、位置、批次号;
 g）维修人员。

4.3 使用可靠性信息收集的程序和方法

4.3.1 需求分析
使用可靠性信息需求的分析规则如下:
 a) 各级信息机构根据所承担的任务和主管部门、上级信息机构的要求，按规定的程序和要求合理确定信息需求，并按信息需求确定所收集信息的用途、内容、范围、来源、分类、项目、格式及统计指标格式。
 b) 需求分析一般由信息用户根据医用电气设备可靠性工作要求提出。信息用户包括生产企业、贮存、运输、交付验收、使用、维修保障、仓储、质量监督等单位或部门。

4.3.2 确定数据收集点或收集范围
数据收集点和收集范围如下:
4.3.3 制定数据收集表格

数据收集表格制定要点如下:

a) 在满足需求的前提下，可靠性数据收集表格要便于信息的收集和填写。
b) 可靠性数据收集表格可参考附录 A。

4.3.4 数据收集的方式

使用可靠性数据的收集方式如下:

a）连续收集：安排专职数据收集员在数据收集点进行数据填写，并定期反馈。

b）定期集中收集：定期安排人员到数据收集点进行数据收集。

c）专项收集：根据特定的任务需求到数据收集点收集特定范围的数据。

4.4 故障判定与记录

4.4.1 故障分类

医用电气设备故障的分类方式有以下几种:

a) 按故障发生的必然性分为偶然故障（医用电气设备由于偶然因素引起的故障，只能通过概率或统计方法来预测）和确定性故障（某种动作产生某种响应的医用电气设备所具有的一种故障，该故障表现为对所有动作产生的响应是不变的）。

b) 按故障存在程度分为间歇故障（医用电气设备发生故障后，不经修理而在有限时间内自行恢复功能的故障）和持续故障（医用电气设备在完成修复性维修之前，持续存在的故障）。

c) 按故障发生过程分为突发性故障（事前的检测或监测不能预测到的故障）和渐变性故障（医用电气设备规定的性能随时间的推移逐渐产生变化的故障。渐变性故障通过事前的检测或监测是可以预测的，有时可通过预防性维修加以避免）。

d) 故障伤害等级：严重、中等、可忽略。

4.4.2 故障统计原则

故障的分类原则以及故障判定原则如下:

a) 故障的统计及计数原则如下:

1) 只有关联故障才统计在内，非关联故障不计在内;
2) 监测或抽验中止、结束时发现的故障也统计在内;
3) 计划性维修如耗品的更换、必要的调校不统计在内;
4) 同一原因引起的故障记为一个故障;
5) 由 N 个独立的故障原因引起的故障，则记为 N 个故障;
6) 同一部位多次出现的故障模式一致的间歇性故障记为一个故障。

b) 下列情况可判为医用电气设备非关联故障:

1) 安装不当引起的故障;
2) 误操作引起的故障;

...
4.5 信息分析、处理、传递的要求和方法

各可靠性信息组织（含可靠性信息收集点、信息用户及监督部门等）应协商制定其针对可靠性信息分析、处理、传递的要求和方法。

4.5.1 信息的分析

信息的分析需求和审查需求:

a) 各可靠性信息组织应根据任务和信息的需求，确定医用电气设备使用过程的可靠性信息分析内容，协商制定可靠性信息分析指导文件，用以指导和协调各可靠性信息组织的信息分析工作。

b) 各可靠性信息组织对自身收集的原始信息应按信息处理的要求进行审查，以保证信息的真实性、实用性，对错误或不符合要求的信息应向提供人员提出质疑并及时修正，或者剔除，或者当成删失数据处理或搁置数据。应妥善保存原有的信息记录，以备查询。

4.5.2 信息的初步处理

在使用可靠性分析评估之前，各可靠性信息组织应对可靠性信息进行初步处理，主要包括:

a) 剔除非关联故障信息。

b) 按故障的统计与计数原则剔除重复信息并增加独立故障信息。

c) 剔除不合理、不恰当的数据。

d) 统一时间起点、终点。

4.5.3 信息的传递

信息的传递原则和要求:

a) 各可靠性信息组织应按有关规定制定信息传递原则及流程，保证各组织之间共享信息的同时，保证信息的安全保密。

b) 可靠性信息在医用电气设备使用单位和生产企业之间的传递流程如图 1 所示。其中，使用单位可靠性信息组织可以包括使用者个人、使用单位、检定检测人员、检定检测单位、维修维护人员、维修维护部门、医用电气设备管理部门等。

c) 医用电气设备使用可靠性信息可根据任务的需求或定期传递的要求进行传递。
4.6 信息的分类与编码

各可靠性信息组织对所收集的可靠性信息协商制定统一的信息分类与编码规则。

4.6.1 信息的分类

医用电气设备使用可靠性信息可依据分类对象（如某一部件）、分类依据（如部件的故障模型），按照一定的原则和方法进行区分归类。使用可靠性信息分类原则及方法可参考 GB/T 7027-2012。

4.6.2 信息的编码规则

信息的编码原则和分类：
a) 信息编码是在信息分类和排序的基础上进行的，使用可靠性信息编码体系应与信息分类体系、产品其他相关文件中的编码相对应。使用可靠性信息编码原则及方法可参考 GB/T 7027-2012。
b) 医用电气设备使用可靠性信息代码可包括以下几类：
 1) 产品的信息代码，如医疗器械唯一标识（Unique Device Identification，UDI）代码；
 2) 工作状态与环境的信息代码；
 3) 缺陷的信息代码；
 4) 故障的信息代码；
 5) 维修的信息代码。

5 医用电气设备使用可靠性评估

5.1 综述

5.1.1 评估设备在实际使用条件下达到的可靠性水平，验证设备是否满足规定的使用可靠性要求。
5.1.2 预测无故障运行的概率，或其他可靠性的测度，如故障率、零件或系统的平均故障间隔时间等。
5.1.3 建立设备或服务性能的故障形态及运作情况的模型。
5.1.4 提供对概率设计有用的设计参数（如应力和强度）方面的统计数据。

5.2 确定使用可靠性评估的指标

5.2.1 医用电气设备可维修时，可选择平均无故障时间 MTBF 作为使用可靠性分析评估的指标，一般记作 θ。
5.2.2 医用电气设备不可维修时，如果评估随机失效期的可靠性表现，可选择基于指数分布的瞬时失效率 $\lambda(t)$ 作为使用可靠性分析评估的指标。如果评估时间累积（退化、磨损、疲劳等失效特征）的退化期“寿命”，可选择威布尔分布情况下的累计失效率 $F(t)$ 或可靠寿命 t_r 来进行评估。

5.2.3 其它可选用的可靠性评估指标见附录B。

5.3 样本的确定

确定要分析的医用电气设备产品型号、批次号、零部件型号及批次号、序列号范围等，确定某一具体故障模式，确定用于分析评估样本的使用时长（比如整机预期使用寿命），作为分析样本的一个筛选因素。

5.4 使用可靠性信息的初步整理

5.4.1 故障数据的主次及因果分析

可通过排列图、因果图进行故障数据的主次及因果分析。

a) 收集所得的医用电气设备使用过程中的故障数据，可通过排列图法进行主次分析，按故障零部件、故障模式、使用单位、具体环境条件不同等级等影响使用可靠性的各项因素，按出现频次的大小从左到右排列，观察分析影响使用可靠性的主要因素。排列图法程序见C.4.3。

b) 通过因果图法辨识导致故障的所有原因，进行故障数据的因果分析，分析导致故障的各原因之间的相互关系，以便分析其根本原因。因果图法程序见C.5.3。

5.4.2 数据分析的直方图

可通过直方图进行样本的经验分布分析。

a) 直方图绘制。
 程序见C.9.3。

b) 直方图的分析。
 根据绘制的直方图形状初步判断故障数据服从的分布类型，以便选择合适的分布进行使用可靠性分析评估。
 1) 分析直方图的形状
 分析直方图的形状可以判定整体正常或异常，进而寻求异常的原因，分析时要着眼于形状的整体。
 2) 直方图与规范界限比较
 分布的均值处于规范界限的中间，且呈对称分布，其散差不大，观测值能稳定满足规范要求。

c) 样本的经验分布。
 1) 指数分布
 基于数据的初步整理与分析，故障数据服从指数分布，则瞬时故障率 $\lambda(t)$ 基本为常数。一般产品进入浴盆曲线的随机失效期后，基本符合指数分布。经常被用来描述医用电气设备可靠性的一种分布。

$$\lambda(t) = \frac{1}{m} \quad \text{......................... (6)}$$
式中：
\(t \) —— 时间；
\(m \) —— 平均无故障间隔时间。

\[
F(t) = 1 - e^{-\lambda t} \] (7)

\[
R(t) = e^{-\lambda t} \] (8)

2) 正态分布
磨损故障往往最接近正态分布或对数正态分布，可以有效的评估处于耗损失效期医用电气设备的可靠性。正态分布具有对称性，主要参数是均值 \(\mu \) 和方差 \(\sigma^2 \)。均值 \(\mu \) 决定正态分布曲线的位置，表示分布的中心倾向。方差 \(\sigma^2 \) 决定正态分布的形状，表示分布的离散程度。

\[
\lambda(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\int_{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt} \] (9)

\[
F(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt \] (10)

\[
R(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt \] (11)

3) 对数正态分布
对数变换可以将较大的数变换成较小的数，这样可以使较为分散的数据相对集中，经常跨几个数量级的数据选择对数正态分布。

对数正态分布常用于某些机械零部件的寿命分析以及维修时间数据的分析。

\[
\lambda(x) = \frac{1}{e} \frac{(\ln x - \mu)^2}{(2\sigma^2)} \] (12)

\[
F(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{x} \frac{(\ln t - \mu)^2}{2\sigma^2} dt \] (13)

\[
R(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{x} \frac{(\ln t - \mu)^2}{2\sigma^2} dt \] (14)

4) 威布尔分布
威布尔分布是由最薄弱环节模型导出的，是一种通用的综合分布，也是一种最常用的分布模型。通过调整分布参数的大小可以构成不同的分布如指数分布、正态分布等。可以为各种不同类型的寿命特性建立模型，同时适用于产品寿命曲线的三个阶段。

两参数威布尔分布瞬时失效率、分布函数、可靠度函数如下：

\[
\lambda(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta-1}
\]

\[\text{.................................(15)}\]

\[
F(t) = 1 - e^{-\left(\frac{t}{\eta}\right)^{\beta}}
\]

\[\text{.................................(16)}\]

\[
R(t) = e^{-\left(\frac{t}{\eta}\right)^{\beta}}
\]

\[\text{.................................(17)}\]

式中:
\(\eta\) ——特征寿命或尺度参数；
\(\beta\) ——形状参数。

三参数威布尔瞬时失效率、分布函数、可靠度函数如下：

\[
\lambda(t) = \frac{\beta}{\eta} \left(\frac{t - t_0}{\eta}\right)^{\beta-1}
\]

\[\text{.................................(18)}\]

\[
F(t) = 1 - e^{-\left(\frac{t - t_0}{\eta}\right)^{\beta}}
\]

\[\text{.................................(19)}\]

\[
R(t) = e^{-\left(\frac{t - t_0}{\eta}\right)^{\beta}}
\]

\[\text{.................................(20)}\]

式中:
\(t_0\) ——失效时间平移的一段时间，这段时间称作“门限”，这段时间可以作为位置参数。

5.5 分布类型检验

5.5.1 通过C.9.3直方图等整理分析，可初步判断样本数据服从的分布类型。但是初步判断的分布与样本的反映是有差异的，有可能初步判断的分布不正确，需要进行检验确认。

5.5.2 分布类型检验方法

分布类型检验方法分为图估法和数学计算法。

a) 图估法检验

1) 图估法是一种比较直观的检验方法，提供分布偏离的视觉信息。可以与其他检验方法联合使用。

2) 图估法须将分布模型函数变换成线性关系，从而在线性坐标中进行线性拟合。是在概率纸上画出失效分布函数观测值，概率纸的横坐标和纵坐标根据分布的不同选择不同的参数。
如果各分布对应概率纸上的点散布在一条直线附近，则可初步判断样本符合该分布，如果绘制的点对系统出现系统偏差，则可考虑样本很大可能不属于该分布。

3) 指数分布的图估法检验参考 D.1 进行。
 (1) 正态分布、对数正态分布的图估法检验参考 GB/T 4882-2001《数据的统计处理和解释 正态性检验》第 5 章进行。
 (2) 威布尔分布的图估法检验参考 GB/T 34987-2017《威布尔分布》第 7 章进行。

b) 计算法检验
 1) 指数分布样本离群值的判断和处理参见 GB/T 8056-2008《数据的统计处理和解释 指数分布样本离群值的判断和处理》。
 2) 正态分布、对数正态分布样本离群值的判断和处理参见 GB/T 4883-2008《数据的统计处理和解释 正态样样本离群值的判断和处理》。
 3) 指数分布常用的 χ^2 检验、F 检验程序和方法见附录 D。
 4) 正态分布、对数正态分布的有方向检验、多方向检验、无方向检验、使用几组独立样本的联合检验方法参考 GB/T 4882-2001《数据的统计处理和解释 正态性检验》进行。
 5) 威布尔分布的计算法检验参考 GB/T 34987-2017《威布尔分布》进行。

5.6 连续型分布的参数估计

5.6.1 指数分布的参数估计参考 GB/T 5080.4-85《设备可靠性试验 可靠性测定试验的点估计和区间估计方法（指数分布）》进行。
5.6.2 正态分布、对数正态分布均值和方差的参数估计参考 GB/T 4889-2008《数据的统计处理和解释 正态分布均值和方差的估计与检验》进行。
5.6.3 威布尔分布的参数估计参考 GB/T 34987-2017《威布尔分布》进行。

5.7 软件程序等其他方法

5.7.1 可根据医用电气设备使用可靠性数据情况，选择附录 C 中的相应统计方法。
5.7.2 可借助数据处理工具软件来开展分布模型的拟合和参数估计，直接得出线性方程和拟合优度。可以通过线性方程的斜率和截距来反推算模型参数，并以拟合优度来表征检验结果。

5.8 编制使用可靠性评估报告

5.8.1 概述部分

使用可靠性评估报告一般由概述部分、正文部分、附录构成。

a) 概述部分由封面、首页、修订状态页、目录构成。

b) 正文部分由引言、产品概述、分析、结论、参考资料构成。

c) 封面应注明医用电气设备名称、产品型号、报告名称、报告编号、总页数、密级、编写单位及日期。

d) 首页应有报告名称、报告编号、校对、审核及批准人的签名以及相应日期等。

e) 修订状态页应反映报告的修订状态，其中应注明报告修订前后的版次及日期。

f) 目次应包括每个章节的编号、标题和开始的页码。

g) 报告中使用的缩写应列表说明，数据应注单位量。

5.8.2 报告正文
使用可靠性评估报告正文内容要求如下：
a) 引言应说明编写报告的目的及其范围。
b) 产品概述简要说明产品的用途、技术状态和工作方式等。必要时应详细说明并用示意图加以补充。
c) 分析一般用文字叙述。不在正文中进行公式推导和数学运算。必要的且冗长的公式推导及数学运算应列在附录中。若使用计算机时，应作必要的技术说明并附以适当的图表或示意图。
d) 应列出分析的主要结论，报告中说明所进行的工作与规定的可靠性和维修性要求的符合程度。
e) 应列出报告中所引用的主要参考资料。
附录A
（资料性附录）
医用电气设备使用可靠性信息收集表

医用电气设备使用可靠性信息收集表如表A.1所示。

表A.1 医用电气设备使用可靠性收集表

<table>
<thead>
<tr>
<th>故障件</th>
<th>名称</th>
<th>所属医用电气设备</th>
<th>名称</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>生产厂商</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>制造日期</td>
<td></td>
</tr>
<tr>
<td>气候环境</td>
<td>温度</td>
<td>相对湿度</td>
<td>%RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>盐雾</td>
<td></td>
</tr>
<tr>
<td>生物化学环境</td>
<td>昆虫</td>
<td>微生物</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学气体</td>
<td></td>
</tr>
<tr>
<td>发现故障环境</td>
<td>振动</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>噪声</td>
<td></td>
</tr>
<tr>
<td>机械环境</td>
<td>电力供应质量</td>
<td>电力负荷能力</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>电磁场骚扰</td>
<td>静电</td>
</tr>
<tr>
<td></td>
<td></td>
<td>核环境</td>
<td>核辐射</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>大气压</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>大气压</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%RH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>医用电气设备故障情况</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□ □ 在规定条件下和规定时间内，不能完成规定功能或部分功能丧失。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ □ 在规定条件下和规定时间内，某些性能指标不能保持在规定范围。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ □ 在规定条件下和规定时间内，因其对人员、环境、能源和物资等方面的影响超出了允许范围。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ □ 功能或性能指标超出了法定或标准要求。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ □ 机械、结构部件或元器件发生松动、破裂、断裂或损坏，且可产生预期不可接受的安全风险。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ □ 技术协议或其他文件规定的故障判据。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>故障后果</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>建议和要求</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>填表单位</th>
<th>名称</th>
<th>通信地址</th>
<th>邮政编码</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>填表人</td>
<td>姓名</td>
<td>职务</td>
<td></td>
<td></td>
</tr>
<tr>
<td>审查人</td>
<td>姓名</td>
<td>职务</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附录B
（资料性附录）
医用电气设备的其它相关使用可靠性参数说明

B.1 与性能完好性有关的基本可靠性参数

B.1.1 平均故障前时间（T_{TF}）

a）平均故障前时间是不可修医用电气设备的一个基本可靠性参数，其计算公式见（B.1）。

$$T_{TF} = \frac{\sum_{i=1}^{n} T_i}{N_T} \quad \text{..} \quad (B.1)$$

式中:
T_i ——在规定的时间内，每个被试医用电气设备的工作时间（寿命单位数）；
$\sum_{i=1}^{n} T_i$ ——n个被试医用电气设备总的工作时间（寿命单位数）。

N_T ——发生故障的设备总数。在论证提出T_{TF}指标时，应明确故障判断准则，并明确故障总数是关联故障总数，还是包括非关联故障的故障总数。

b）在论证提出T_{TF}指标时，应明确指标的统计意义，说明该指标是均值还是置信度下限等。

B.1.2 平均故障间隔时间（T_{BF}）

a）平均故障间隔时间是可修医用电气设备的一个基本可靠性参数，其计算公式见（B.2）。

$$T_{BF} = \frac{T_O}{N_T} \quad \text{..} \quad (B.2)$$

式中:
T_O ——在规定的时间内，医用电气设备的工作时间。这里的“时间”是指寿命单位数；
N_T ——故障总数。应有明确的故障判断准则，并明确故障总数是关联故障总数，还是包括非关联故障的故障总数。
对于可修医用电气设备，各故障间隔时间不一定是独立同分布的随机变量。应把医用电气设备发生故障的时间看成是时间轴上依次出现的随机点，即对于可修医用电气设备的故障规律应用随机点过程来描述，在工程应用中采用时齐泊松过程。

c）在论证提出 T_{bf} 指标时，应明确指标的统计意义，说明该指标是均值还是置信度下限等。

B.1.3 平均预防性维修间隔时间（T_{BPM}）

a）平均预防性维修间隔时间（或间隔期）是与维修策略有关的可靠性参数。包括所有的保养、定期检测、定期修理、定期更换等维修工作类型的间隔时间。

b）由于各级预防性维修间隔时间（或间隔期）差别很大，影响各级预防性维修间隔期的因素也比较复杂。一般不直接提出 T_{BPM} 指标要求，而是分别提出大、中、小修间隔期，一、二、三级保养间隔期的要求。

B.1.4 平均维修间隔时间（T_{BM}）

平均维修间隔时间是一个综合考虑计划维修与非计划维修，与维修策略（管理）有关的一个可靠性参数，其计算公式见（B.3）。

$$ T_{BM} = \frac{T_0}{N_M} \quad \text{..} \quad (B.3) $$

式中：

T_0——在规定的时间内，医用电气设备的工作时间。这里的“时间”是指寿命单位数；

N_M——维修总次数。论证时应明确，除包括各类预防性维修和修复性维修外，还应说明包括哪些修理、保养、检测等，还应明确是否包括属于技术管理要求进行的例行维修活动。

B.2 与任务有关的可靠性参数

B.2.1 平均严重故障间隔时间（T_{BCF}）

a）平均严重故障间隔时间是与任务有关的基本可靠性参数，其计算公式见（B.4）。

$$ T_{BCF} = \frac{T_{OM}}{N_{TM}} \quad \text{..} \quad (B.4) $$

式中：

T_{OM}——任务总时间，在任务剖面中的实际工作时间。在很多情况下，把总工作时间视为任务总时间，即 $T_{OM} = T_0$；
$$N_{TM}$$ ——严重故障（也称任务故障）总数。论证时应明确任务的定义、任务故障的判断准则。应明确故障总数是关联的任务故障总数，还是包括关联与非关联任务故障的总数。

b）$$T_{BCF}$$ 作为基本参数，对于可修医用电气设备与 $$T_{HF}$$，在工程应用中按时齐泊松过程处理。在提出 $$T_{BCF}$$ 指标时应明确指标的统计含义。

B.2.2 成功率（$$P_s$$）

a）成功率是在规定的条件下，成功完成规定功能的概率，该参数适用于一次性医用电气设备，其计算公式见（B.5）。

$$P_s = \frac{N_S}{N_T} \quad \ldots (B.5)$$

式中：

$$N_S$$ ——任务成功次数。

$$N_T$$ ——总的任务次数。

b）成功率的计算只是一个估计值，除非次数很多时才接近实际值。一般用非参数法计算（也可根据总次数和成功次数直接查表）得到成功率的单侧置信下限。论证时不仅要提出 $$P_s$$ 要求，同时应考虑要求的置信水平和试验的样本量。

B.3 耐久性参数

B.3.1 使用寿命（$$L_{SE}$$）

a）在提出使用寿命指标时应包括：使用寿命的量值（寿命单位数）、达到使用寿命的概率及其置信度。

a）按规定的样本量，在规定的条件下进行寿命试验，试验到要求的使用寿命，记录发生耐久性损坏（达到极限状态）的样本数，用非参数法计算不发生耐久性损坏概率的置信下限（达到要求寿命的概率）。

b）在提出使用寿命指标时，同时规定参试的样本数和试验到使用寿命要求时不发生耐久性损坏的样本数。

c）有使用寿命要求的产品，应同时提出耐久性损坏的判断准则（使用寿命的一些评估参数值和定性评估标准）。

d）使用寿命的确定应通过规定的寿命试验。

e）对于不可修医用电气设备，一般用使用寿命来表述其耐久性水平，对于可修医用电气设备也可用大修寿命、首次大修期限等术语来表述。

B.3.2 首次翻修期限（首次大修寿命）
首次翻修期限是可修医用电气设备使用寿命的一种表述用语，见“使用寿命”。

B.4 贮存可靠性参数

a) 贮存可靠性参数主要是贮存寿命 I_{ST}。

b) 贮存寿命是医用电气设备在规定条件下的贮存期限。论证提出贮存寿命要求时，应特别关注规定条件，包括贮存的环境条件、封存条件等，还包括贮存期间定期检修和维护要求等。

c) 贮存寿命的试验考核需要的周期较长，一般在医用电气设备定型时不可能完成试验考核工作，只能对一些新材料、新元器件等做一些加速环境试验，参考类似医用电气设备的试验结果提出分析评估意见。
附录 C
（资料性附录）
医用电气设备使用可靠性统计方法应用

C.1 分层法

C.1.1 分层法是根据产生数据的特征而将数据划分成若干组，进行科学归类整理和汇总分析的一种方法。

C.1.2 分层法通常用于层次分析，查找出问题产生的原因。

C.1.3 程序
分层法程序如下：
a）收集数据。
b）将收集到的数据按照不同的目的选择分层标志。
c）按选定的标准将数据进行分层。
d）按层进行归类统计。
e）画出分层归类图。
f）分析问题原因。
g）做出结论。

C.1.4 规则
分层法规则如下：
a）处于同一层次内的数据波动幅度尽可能要小。
b）层与层之间的差别要尽可能大。
c）数据分层与收集整理数据的目的性紧密相关。

C.2 调查表

C.2.1 调查表是用来系统地收集数据并对数据进行整理和分析，确认使用可靠性的一种方法。主要包括：使用流程调查表、不符合项目/位置/原因调查表、质量特性调查表、操作者调查表等。

C.2.2 调查表通常用于对影响可靠性的因素进行系统的数据收集和原因分析。

C.2.3 程序
调查表法程序如下：
a）根据收集数据的目的，选用适当的调查表。
b）确定所需的数据及收集方式。
c）编制记录表格并采集数据。
d）分析数据。

C.3 树图
C.3.1 树图是把实现的目的与需要采取的措施或手段，系统地展开，并绘制成图，明确问题的重点，寻找最佳手段或措施的一种方法。

C.3.2 树图通常用于表示某一主题与其组成要素之间的关系，进行策划和解决问题。

C.3.3 程序

树图法程序如下:
 a) 明确主题。
 b) 确定主要类别。
 c) 确定组成要素及子要素。
 d) 绘制树图。
 e) 评审树图。

C.3.4 规则

树图法规则如下:
 a) 树图中的主要类别应根据具体的主题或逻辑关系选取。
 b) 要素之间因果关系应清楚。
 c) 树图应尽可能展开到最低一级的要素。
 d) 用于多目标的因相分析时，其目标不宜超过3个。

C.4 排列图

C.4.1 排列图是为了寻找到使用可靠性主要问题或影响使用可靠性的主要因素，将一定期间内所采集的数据，依项目加以分类，并按其影响程度进行排列的一种图示方法。

C.4.2 排列图通常用于使用可靠性分析，寻求改进机会。

C.4.3 程序

排列图法程序如下:
 a) 选择分析项目。分析项目可以是产品（零部件）、故障模式、使用单位、不同温度等级等故障数。
 b) 选择用于分析的度量单位，如出现的次数（频数、件数）、成本、金额等。
 c) 选择用于分析数据的时间周期。
 d) 按度量单位量值递减的顺序从左到右的顺序在横坐标上列出项目，发生数量较少的项目合并为“其他”项，把此栏放至最右端。
 e) 在横坐标的两端分别画出纵坐标，左边的纵坐标按度量单位标定，其高度必须等于所有项目的量值总和，右边的纵坐标与此等高，并从0到100%标定。
 f) 根据每一项目的量值计算该项目的频率 \(p_i \)，见式（C.1）。

\[
P_i = \frac{f_i}{N} \]
(C.1)

式中:

\(f_i \) ——频数，用左边纵坐标表示的值；
所有项目的量值总和。

g）根据每一项目频率 p_i 值，计算出累计项目的频率 F_i 值，见式（C.2）。

$$F_i = \sum_{i=1}^{i} p_i \quad \cdots \cdOTS
c）列出的因素要尽可能具体。

d）主要因素应在末端因素中查找。

e）因素之间不能有关联，同一因素只能出现一次。

C.6 对策表

C.6.1 对策表又称为“措施计划表”，是针对发生可靠性问题的主要原因指定应采取哪些相应措施的计划表。

C.6.2 对策表通常用于以表格的形式制定可靠性纠正措施的场合。

C.6.3 程序

对策表法程序如下：

a）制定表格，表头栏目依次排出原因、现状、目标、措施、执行人、完成期限。

b）将故障产生原因和现状填入表中。

c）明确目标，制定措施。

d）明确执行人和完成期限。

C.6.4 规则

对策表法规则如下：

a）指定对策表应注重可操作性和可检查性。

b）对策表中各项目标应以定量化数据表示，无法量化时，应以肯定、准确的定性语言表述。

C.7 关联图

C.7.1 关联图是把使用可靠性和影响使用可靠性因素之间的因果关系用箭头连接起来的一种图示方法。

C.7.2 关联图通常用于分析关联因素的因果关系，寻求使用可靠性改进的计划，主要用于多目标的因果分析。

C.7.3 程序

关联图法程序如下：

a）明确使用可靠性评价指标。

b）调查研究，找出影响评价指标的所有因素。

c）梳理因素之间的因果关系。

d）按因素间的因果关系，从原因至结果绘制关联草图。

e）讨论分析，补充完善，形成关联图。

f）分析所有末端因素，从中确定影响可靠性评价指标的主要因素，以便制定措施。

C.7.4 规则

关联图法规则如下：

a）不应漏掉因素，也不应纳入无关因素。

b）末端因素应是可以直接采取措施的因素。
c）应从末端因素中确定主要因素，并作出标识。

C.8 矩阵图

C.8.1 矩阵图是用矩阵形式分析因素之间相互关系的一种图示方法。常用的矩阵图有L型和T型两种。

C.8.2 矩阵图通常用于分析影响使用可靠性的复杂因素，寻求可靠性改进机会。

C.8.3 程序

矩阵图法程序如下：
 a）确定使用可靠性评价指标的数量。
 b）确定合适的矩阵图形。
 c）制作图形。
 d）确定各因素之间的关联关系，并作出标识。
 e）讨论分析，选取影响可靠性评价指标的主要因素，以便可靠性改进。

C.8.4 规则

矩阵图法规则如下：
 a）应对选定的可靠性评价指标，进行多次测量或试验，确定最佳解决途径。
 b）应根据因素间相关关系的强弱程度，采取适当的统计方法进一步分析论证。
 c）L型适用于双因素，T型适用于三因素。

C.9 直方图

C.9.1 直方图是以矩形的宽度表示数据范围的间隔，以矩形的高度表示给定间隔内数据出现的频次，变化的高度形态表示数据分布情况的一种图示方法。

C.9.2 直方图通常用于掌握医用电气设备使用可靠性观测值的波动和分布情况，以确定质量改进方向及改进措施。

C.9.3 程序

直方图法程序如下：
 a）收集 n 个观测值（通常 n ≥50）。
 b）计算公差范围 T 值，见式（C.3）。

\[T = T_U - T_L \] ... (C.3)

式中：
 \(T_U \) ——上公差；
 \(T_L \) ——下公差。
 c）计算极差 R 值，见式（C.4）。

\[R = X_{max} - X_{min} \] ... (C.4)
式中:
\(X_{\text{max}} \) ——所有数值的最大值；

\(X_{\text{min}} \) ——所有数值的最小值。

d）确定观测值的分组数 \(K \)。
e）确定组距 \(h \)。见式\((C.5)\)。

\[h = \frac{R}{K} \] \hspace{1cm} (C.5)

式中：
\(R \) ——极差；
\(K \) ——数据的组数。

f）依次计算各组边界值，见式\((C.6)\)、\((B.7)\)。

\[x_0 = X_{\text{min}} - \frac{H}{2} \] \hspace{1cm} (C.6)

\[x_n = X_{n-1} + h \] \hspace{1cm} (C.7)

式中：
\(H \) ——最小测量单位值；
\(x_0 \) ——第一组的下边界值；

\(X_{n-1} \) ——第 \(n \)组的下边界值，即第 \(n-1 \)组的上边界值；

\(X_n \) ——第 \(n \)组的上边界值。

g）计算各组中心值 \(X_i \)。见式\((C.8)\)。

\[X_i = \frac{x_i + x_{i-1}}{2} \] \hspace{1cm} (C.8)

式中：
\(X_i \) ——第 \(i \)组中心值；

\(x_{i-1} \) ——第 \(i \)组的下边界值；

\(x_i \) ——第 \(i \)组的上边界值。

h）做频数分布表，统计各组的频数 \(f_i \)。
i）绘制直方图。
j）图形形状分析和对照公差分析。
C.10 过程能力指数

C.10.1 过程能力是指检查检查过程的固有变差和分布，以便估计其产生符合规范所允许变差范围的输出的能力，通常用过程能力指数 C_p 来表示。

C.10.2 过程能力指数用于评价过程连续产生符合规范的输出的能力，并估计预期的不合格产品的数量。

C.10.3 程序

按GB/T 4091-2001中的第8章执行。

C.10.4 规则

见GB/T 4091-2001中的第8章。

C.11 控制图

C.11.1 控制图是对使用可靠性相关数据进行测定、记录、评估，从而监察过程是否处于受控状态的一种图示方法。任何过程特性的变量（计量数据）或属性（计数数据）均可用控制图来表示。计数型控制图有均值—极差控制图和均值—标准差控制图，计数型控制图有不合格品控制图、不合格品率控制图、缺陷数控制图和单位缺陷数控制图。

C.11.2 控制图通常用于测量过程的变化，对变异和失控进行调整，使过程长期保持稳定状态。

C.11.3 程序

按GB/T 4091-2001中的第5、6、7、9、10、11章执行。

C.11.4 规则

见GB/T 4091-2001中的第5、6、7、9、10、11章。

C.12 散布图

C.12.1 散布图是用来研究两个变量之间是否存在相关关系以及存在何种相关关系的一种图示方法。

C.12.2 散布图通常用于判断使用可靠性与某一变化因素之间（或者两个因素之间）存在的相关关系，预测其变化规律。

C.12.3 程序

散布图法程序如下：

a）确定研究对象。

b）收集数据。

c）建立平面坐标系，并将数据标识在相应的位置上。

d）根据点子云的分布或数据表中的数据分析变量之间的相关关系的类型和程度。

C.12.4 规则
散步图法规则如下：
a）收集的数据一般应在30对以上。
b）收集的数据必须来源于实验，应用范围不能超出数据的取样范围。
c）出现个别偏离分布趋势的点子，应查明原因后剔除。
d）一般采用对照典型图例法、简单象限法和回归分析法进行相关关系的分析判断。

C.13 柱状图

C.13.1 柱状图是用柱状图案的高低或长短来表示数据大小，并对数据进行比较分析的一种图示方法。

C.13.2 柱状图用于比较同类指标数据的大小，分析指标在不同条件下优劣程度。

C.13.3 程序

柱状图法程序如下：
a）明确对比指标。
b）确定比较条件。
c）收集数据。
d）绘制柱状图。

C.13.4 规则

柱状图法规则如下：
a）指标必须是可以量化的。
b）比较条件应有可比性。
c）柱状高度应按比例绘制。

C.14 饼分图

C.14.1 饼分图是在一个圆内，以圆心为中点按项目占整体的比例划分成若干个扇形的一种图示方法。

C.14.2 饼分图通常用于表示项目占整体的比例。

C.14.3 程序

饼分图法程序如下：
a）收集数据。
b）计算项目占整体的比例。
c）画饼分图。
d）分析图形。

C.14.4 规则

饼分图法规则如下：
a）数据收集应齐全。
b）项目的概念应清楚，界限应分明。
c）项目在圆中的比率应按比例，文字说明应准确。
C. 15 折线图

C. 15.1 折线图是用来表示某一使用可靠性评价指标数值随时间推移而出现波动趋势的一种图示方法。

C. 15.2 折线图通常用于对某一使用可靠性评价指标数值进行动态监视或静态分析。

C. 15.3 程序

折线图法程序如下：
a) 确定使用可靠性评价指标。
b) 建立平面直角坐标，选取度量单位。
c) 适时采集数据，并在坐标上进行标识。
d) 分析图形。

c. 15.4 规则

折线图法规则如下：
a) 当用于流程动态监控时，所收集的数据时间间隔应尽可能的短。
b) 当用于静态分析时，收集的数据不能太少。

C. 16 抽样检验

C. 16.1 抽样检验是指从一批医用电气设备中，抽取样本进行使用可靠性检验，从而对批产品可靠性作出推断的一种检验方法。

C. 16.2 通常用于下列场合：

a) 破坏性检验；
b) 产品数量多；
c) 检验项目多；
d) 检验费用大。

C. 16.3 程序

抽样检验程序如下：

a) 根据医用电气设备使用可靠性评价指标的分布确定抽样检验类型。
b) 明确判断产品批合格与否的质量标准。
c) 确定抽样检验方案。
d) 从产品批中抽取样本。
e) 对样本进行检验。
f) 对检验数据进行处理。
g) 判定产品批是否合格。

C. 17 正交试验

C. 17.1 正交试验是指利用正交表选择试验条件、合理安排试验、分析试验结果、寻求各因素最佳搭配方案的一种试验方法。
C.17.2 正交试验通常用于以规定的置信水平评价产品、过程或系统的某些特性。

C.17.3 程序

正交试验程序如下：
a）明确试验目的。
b）确定考核指标。
c）确定因素位级表。
d）选择适宜的正交表。
e）确定试验方案。
f）试验。
g）分析试验结果。
h）必要时，重复b）至g）。
i）确定最佳方案，进行验证试验。

C.17.4 规则

正交试验规则如下：
a）对试验结果的数据分析方法应与正交表的类型相适应。
b）试验应以单指标为宜。
c）试验过程中，考虑因素要控制在应有的精度范围内。

C.18 故障树分析

C.18.1 故障树分析是将不希望发生的事件设为顶层事件，再依顶层事件顺序排查，分析造成顶层事件的原因，逐步找出导致顶层事件发生的各种基本事件的一种分析方法。

C.18.2 故障树分析通常用于判明潜在故障，计算医疗电气设备发生故障的概率，诊断故障。

C.18.3 程序

见GB 7829-87第4、5章。

C.18.4 规则

见GB 7829-87第5章。

C.19 故障模式影响及危害性分析

C.19.1 故障模式影响及危害性分析是通过对医用电气设备各组成单元可能存在的各种故障模式及其对产品功能的影响进行分析，并把每个可能存在的故障模式按其严重程度进行分类，确定故障的严重程度、发生概率及其危害性的一种分析方法。

C.19.2 故障模式影响及危害性分析通常用于分析故障原因、故障模式及危害程度，提出预防改进措施。

C.19.3 程序

见GB/T 7826-2012。
C.19.4 规则

见GB/T 7826-2012。

C.20 方差分析

C.20.1 方差分析是在相同方差假定下检验多个正态均值是否相等的一种统计方法, 最常用的是单因素方差分析。

C.20.2 方差分析通常用于分析对医用电气设备使用可靠性有显著影响的系统因素与偶然因素，并估计其影响程度。

C.20.3 程序

方差分析程序如下：

a) 明确使用可靠性评价指标；
b) 收集并整理数据；

c) 计算每一水平下数据的总和 \(T_i \)，见式（C.9）。

\[
T_i = \sum_{j=1}^{m} Y_{ij} \quad \text{(C.9)}
\]

式中：

\(Y_{ij} \)——每一水平下在每次实验时所得数据；
\(i \)——第\(i \)水平下；
\(j \)——第\(i \)水平下第\(j \)个数据。

d) 计算所有水平下数据的总和 \(T \)，见式（C.10）。

\[
T = \sum_{i=1}^{r} T_i \quad \text{(C.10)}
\]

e) 计算总的偏差平方和 \(S_T \)，见式（C.11）。

\[
S_T = \sum_{i=1}^{r} \sum_{j=1}^{m} Y_{ij}^2 - \frac{T^2}{n} \quad \text{(C.11)}
\]

式中：

\(T \)——所有水平下数据总和；
\(r \)——水平数；
\(m \)——试验数；
\(n \)——水平数与试验数的积。

f) 计算因素偏差平方和 \(S_A \)，见式（C.12）。

\[
S_A = \sum_{i=1}^{r} \sum_{j=1}^{m} Y_{ij}^2 - \frac{T_i^2}{m} \quad \text{(C.12)}
\]
\[S_A = \frac{1}{m} \sum_{i=1}^{r} T_i^2 - \frac{T^2}{n} \] .. (C.12)

g）计算组内偏差平方 \(S_e \)，见式（C.13）。

\[S_e = S_T - S_A \] .. (C.13)

计算总的自由度 \(f_T \)，见式（C.14）。

\[f_T = n - 1 \] .. (C.14)

h）计算因素的自由度 \(f_A \)，见式（C.15）。

\[f_A = r - 1 \] .. (C.15)

i）计算误差的自由度 \(f_e \)，见式（C.16）。

\[f_e = f_T - f_A \] .. (C.16)

j）计算各均方及 \(F \) 值，根据给定的显著性水平 \(\alpha \) 查表《\(F \) 检验临界值表》得 \(F_a (f_A, f_e) \) 值，并与求得的 \(F_{le} \) 比较。当 \(F_{le} > F_a (f_A, f_e) \) 时，认为因素 \(A \) 是显著的。当 \(F_{le} < F_a (f_A, f_e) \) 时，认为因素 \(A \) 不显著。

k）分析判定，以便改进。

C.20.4 规则

方差分析规则如下：
a）使用可靠性评价指标数据应符合正态分布。
b）数据应相互独立。
c）在不同水平下，方差应相等。

C.21 一元回归分析

C.21.1 一元回归分析是将某一使用可靠性评价指标与其潜在的影响因素，通过建立一元线性数学模型，近似地表达出使用可靠性评价指标与其潜在的影响因素之间平均变化关系的一种方法。

C.21.2 一元回归分析通常用于分析使用可靠性评价指标数据，确定因素间的关系，找出其在一定程度上的确定性，求出回归函数，并应用该函数进行预测和控制。

C.21.3 程序

一元回归分析程序如下：
a）明确使用可靠性评价指标；
b）收集并整理数据。
c）画出散布图，按典型图例判断其是否线性相关。
d）若散布图非线性相关时，重复a）至c）或结束一元线性回归分析。
e）若散布图线性相关时，建立数学模型，见式(C.17)。

\[\hat{Y} = a + bX \] (C.17)

式中：
\(\hat{Y} \) ——回归值；
\(X \) ——自变量；
\(a \) ——回归直线的截距；
\(b \) ——回归直线的斜率。
f）计算回归直线的斜率 \(b \)，见式(C.18)、(C.19)、(C.20)。

\[L_{XX} = \sum_{i=1}^{n} X_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} X_i \right)^2 \] (C.18)

\[L_{XY} = \sum_{i=1}^{n} (X_i Y_i) - \frac{1}{n} \left(\sum_{i=1}^{n} X_i \sum_{i=1}^{n} Y_i \right) \] (C.19)

\[b = L_{XY} / L_{XX} \] (C.20)

式中：
\(Y \) ——因变量；
\(L_{XY} \) ——XY的协方差；
\(L_{XX} \) ——X的方差。
g）计算自变量 \(X \) 的均值 \(\bar{X} \) 和因变量 \(Y \) 的均值 \(\bar{Y} \)。
h）计算回归直线的截距 \(a \)，见式(C.21)。

\[a = \hat{Y} - b\bar{X} \] (C.21)
i）求出回归方程，并利用 \((0, a)\) 和 \((\bar{X}, \bar{Y})\) 在平面直角坐标上作出图形。
j）计算因素偏差平方和 \(S_{A} \)、组内误差平方和 \(S_{e} \)、因素自由度 \(f_{A} \)、误差自由度 \(f_{e} \)。
k）计算 \(F_{\text{比}} \)，见式(C.21)。

C.21.4 规则

见GB/T 7826-2012。
附录 D
（资料性附录）
相关分布类型检验

D.1 图估分布检验（指数分布）

D.1.1 寿命试验不必进行到所有样品失效，截尾试验也是适用的。
D.1.2 用单边对数纸给出点估计，仅适用于首次失效时间和失效数至少为4的情况。
D.1.3 图估法给出点估计，还可以表示偏离恒定失效率的迹象。
D.1.4 受试产品数为 n，观察到的失效数为 γ，对于每个失效产品，记录相关试验时间 t_i。
D.1.5 按失效时间的顺序排列得 t_1 < t_2 < \ldots < t_n。
D.1.6 在单边对数纸上，t_i 值是按线性刻度点在横轴上，而 \frac{1}{1 - \frac{P_{0.50}(t_i)}{100}} 按对数刻度点在纵坐标上。
其中，\frac{P_{0.50}(t_i)}{100} 是 t_i 的50%中位秩，其数值可以查表得到。
D.1.7 如果恒定失效率的假设可以成立，则这些点与通过 t_i=0，比例为1的直线拟合得较好。
D.1.8 在画图线时，主要根据中间的一些点决定斜率。
D.1.9 若这些点在直线附近，那么，平均寿命的估计是纵轴为2.72所对应的时间坐标 t。失效率的估计是 t 值的倒数。

D.2 χ^2 检验

D.2.1 设总体 X 的分布函数为 $F(x)$，根据来自该总体的样本检验原假设，检验假设 $H_0: F(x) = F_0(x)$。

将总体 X 取值范围分成 k 个区间 $[\alpha_0, \alpha_1], (\alpha_1, \alpha_2], \ldots, (\alpha_{k-1}, \alpha_k]，\alpha_0$ 可以取 $-\infty$，α_k 可以取 $+\infty$。X 落入第 i 个区间的概率 $p_i = F_0(\alpha_i) - F_0(\alpha_{i-1})$。$i=1, 2, \ldots, k$，$\alpha_i$ 是 $F_0(x)$ 的连续点。
D.2.2 如果样本量为 n，则 np_i 为落在 \((\alpha_i-1, \alpha_i] \) 区间的理论频数，如果 n 个观测值落入 \((\alpha_i, \alpha_i-1] \) 的实际频数为 n_i，则 \(H_0 \) 成立时，当 \(n \to \infty \) 时，统计量
\[
\chi^2 = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}
\]
的极限分布是自由度为 \(k-1 \) 的 \(\chi^2 \) 分布。

D.2.3 大多数情况下，要检验的母体分布 \(F_0(x; \theta) \) 中 \(\theta = (\theta_1, \theta_2, \ldots, \theta_m) \) 为 m 维未知参数，
为计算统计量 \(\chi^2 \) 中的 \(p_i \)，用 \(\theta \) 的极大似然估计 \(\hat{\theta} \) 代替 \(\theta \)，即
\[
\hat{p}_i = F_0(a_i; \hat{\theta}) - F_0(a_i; \theta),
\]
当 \(i = 1, 2, \ldots, k \)。此时，选择检验统计量为
\[
\hat{\chi}^2 = \sum_{i=1}^{k} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i},
\]
该统计量的极限分布是自由度为 \(k-m-1 \) 的 \(\chi^2 \) 分布。

D.2.4 对于给定的显著性水平 \(\alpha \)，可由 \(\chi^2 \) 分布分位点求出临界值 \(\chi^2_{1-\alpha}(k-m-1) \)，当 \(\hat{\chi}^2 \) 的观测值大于临界值 \(\chi^2_{1-\alpha}(k-m-1) \) 时，拒绝原假设。

D.2.5 \(\chi^2 \) 分布统计分布数值表参见标准 GB 4086.2-83。

D.3 \(F \) 检验

D.3.1 设随机变量 X、Y 的样本分别为 \(x_1, x_2, \ldots, x_{n_1} \) 与 \(y_1, y_2, \ldots, y_{n_2} \)，其样本方差分别为 \(D_X \) 与 \(D_Y \)。检验 X 的总体方差 \(D_X \) 与 Y 的总体方差 \(D_Y \) 是否相等。假设 \(H_0: \ D_X = D_Y = \sigma^2 \)。

D.3.2 根据统计理论，当假设成立时，统计量服从第一自由度为 \(n_1 - 1 \)、第二自由度 \(n_2 - 1 \) 的 \(F \) 分布。

D.3.3 函数给定显著性水平 \(\alpha \)，查 \(F \) 分布数值表，得 \(F_{\alpha/2} \)。若计算的 \(F \) 值小于 \(F_{\alpha/2} \)，则假设成立，否则假设不合理。

D.3.4 \(F \) 分布统计分布数值表可参看标准 GB 4086.4-83。

D.4 柯尔莫哥洛夫-斯米诺夫分布检验

D.4.1 为了进行参数（如均值和标准偏差）估计，柯尔莫哥洛夫-斯米诺夫检验或 \(d \) 检验是利用观测数据绘制合适的假设理论分布（如对数正态）图形。
D.4.2 围绕该理论分布，构造正或负 d 个概率分布的边界。表1给出了 d 的临界值，它的选择要根据进行检验的数据样本大小及显著性水平 (α)。其后是将观察到的数据分布画到图上。

D.4.3 如果观测数据在任何点上超出了边界，那么假设理论分布就与数据不符。相反，如果观测数据始终在边界之内，则不能拒绝假设分布。

表D.1 d 的临界值

<table>
<thead>
<tr>
<th>样本大小</th>
<th>显著性水平 α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>0.474</td>
</tr>
<tr>
<td>10</td>
<td>0.342</td>
</tr>
<tr>
<td>15</td>
<td>0.283</td>
</tr>
<tr>
<td>20</td>
<td>0.246</td>
</tr>
<tr>
<td>30</td>
<td>0.20</td>
</tr>
<tr>
<td>40</td>
<td>0.18</td>
</tr>
<tr>
<td>50</td>
<td>0.16</td>
</tr>
<tr>
<td>>50</td>
<td>$\frac{0.14}{\sqrt{n}}$</td>
</tr>
</tbody>
</table>

注：上面显示 d 值是依据一个完全规范的假设分布。假如用样本数据来估计参数，对于指数分布检验，表中的 d 要乘以 0.8；对于正态分布检验，表中的 d 要乘以 0.67。
参考文献

[1] GB/T 9414.3-2012 维修性 第3部分：验证和数据的收集、分析和表示
[2] GB/T 9414.8-2001 设备维修性导则 第九部分：维修性评价的统计方法
[4] GB/T 7826-2012 系统可靠性分析技术 失效模式和影响分析（FMEA）程序
[8] GB/T 4883-2008 数据的统计处理和解释 正态样本离群值的判断和处理
[10] GB/T 8056-2008 数据的统计处理和解释 指数分布样本离群值的判断和处理
[11] GB/T 5080.4-85 设备可靠性试验 可靠性测定试验的点估计和区间估计方法（指数分布）
[12] GB/T 4889-2008 数据的统计处理和解释 正态分布均值和方差的估计与检验
[13] GB 4086.4-83 统计分布数值表 F 分布
[14] GB 4086.2-83 统计分布数值表 χ^2 分布
[15] GB 7829-87 故障树分析程序
[16] GB/T 4091-2001 常规控制图